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Abstract

COVID-19 continues to cause a significant impact on public health. Tominimize this
impact, policy makers undertake containment measures that howeer, when carried

out disproportionately to the actual threat, as a result if errorn eous threat assessment,
cause undesirable long-term socio-economic complications. In addin, macro-level or
national level decision making fails to consider the localized sensitivitie in small
regions. Hence, the need arises for region-wise threat assessisethat provide insights
on the behaviour of COVID-19 through time, enabled through accuate forecasts. In
this study, a forecasting solution is proposed, to predict daily new ases of COVID-19
in regions small enough where containment measures could be locally plemented, by
targeting three main shortcomings that exist in literature; the unr eliability of existing

data caused by inconsistent testing patterns in smaller regions, wak deploy-ability of
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forecasting models towards predicting cases in previously unseeegions, and model
training biases caused by the imbalanced nature of data in COVID-1%pi-curves.
Hence, the contributions of this study are three-fold; an optimized smoothing
technique to smoothen less deterministic epi-curves based on epit@logical dynamics
of that region, a Long-Short-Term-Memory (LSTM) based forecasting model trained
using data from select regions to create a representative and divee training set that
maximizes deploy-ability in regions with lack of historical data, and an adaptive loss
function whilst training to mitigate the data imbalances seen in epi-curves. The
proposed smoothing technique, the generalized training strateggnd the adaptive loss
function largely increased the overall accuracy of the forecastThe fact that forecasts
made on regions with the generalized training strategy actually outgerformed the
current practice of using local training data is an important finding of this work.
Therefore, despite the absence or limited existence of local pandec data, the
proposed methodology enables efficient containment measures atmore localized

micro-level.

Introduction

The COVID-19 pandemic has now spread to all regions throughout he world.
Classified as a global pandemic by the World Health Organisation (WHO) COVID-19
continues to affect humankind more than a year after its first recrded case, causing
over 4.3 million total recorded deaths worldwide as of August 2021, ith close to ten
thousand deaths per dayl[1]. This gradual increase in numbers hasughed
governments and policy makers to enforce containment measurdhat include
restrictions on public gatherings, local and international travel bans, and region-wise
lock-downs [2[3]. Although these policies have attenuated the efée of COVID-19
from a mere numbers standpoint, they have given rise to a variety bside-effects from
multiple viewpoints [4]{6]. Studies have shown the existence of a signifamt
psychological impact on students due to lack of social interactiongaused by
distance-learning programs carried out by schools and universitiearound the world,
such as USAI[[7,8], Bangladesh [9] and Spain [10]. From an economicalrppective,

these measures have led to closure of industries and small businessnegatively

August 24, 2021

2/B7]



affecting those who rely on their daily or weekly income for self-sugnance [[11].
Furthermore, the oscillatory behaviour of the COVID-19 pandemic caused by what is
commonly termed as covid "waves" calls for policy makers to adapt ad optimize
containment measures in response to current severity levels. This because a
disproportionate response while attenuating disease spread will urecessarily create an
adverse socio-economic impact, hence the need for proportioretesponses based on
threat levels. In addition to this oscillatory behaviour, the localized nature of
COVID-19 spread also calls for responses to be enacted locally, in aaythat is unique
to each sub-region as opposed to generalizing over a larger region.

This need for proportionate responses can be fulfilled upon optimatlecision
making on containment policies enforced by policy makers, achievedia data-driven
analysis of COVID-19 [12[13], that attempt to optimally balance disease transmission
mitigation with the aforementioned socio-economic impact cost. Diferent governments
use different policies when the number of cases rises or an outbideaccurs within the
country. For example, a group of experts have proposed a natical framework for the
USA, which contains four sets of policies depending on the number afew confirmed
COVID-19 cases per one million population on a single day [14]. Similarly, te Centre
for Disease Prevention (CDC) of the USA has defined risk levels of C@ID-19 to
determine travel restrictions across regions, to optimally balanceof the transmission
mitigation versus socio-economic impact trade-off[[15]. These disete threat level
mechanics (or alert levels) are introduced as an effort to implemenstrategies to
mitigate COVID-19 transmission based on severity of the pandemic b a given
location (country/state/province) as it allows the government and policy makers to
initiate a proportionate response to curb the spread. Hence, ensing that the adverse
socio-economic impact is also optimally mitigated.

For these strategies to be carried out optimally, there needs to ben understanding
of how the pandemic spread will behave in the future, as it will be posble to analyze
the long-term impact caused by applying certain policies based on exigg threat
levels. This understanding is reached by localized micro-level forests of COVID-19
which helps obtain future insights on a qualitative basis, where numeical data is
interpreted as actionable information, thereby enabling governmats to initiate

protocols in the aforementioned optimized manner.
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Mathematical modelling of COVID-19 through time serves as the bais for
COVID-19 forecasting studies. It is divided into two main sections; gidemiological
models such as Susceptible-Infected-Recovered (SIR) models[Xtd their variants,
and numerical forecasts obtained using Al (Artificial Intelligence) techniques such as
Neural Networks (NN) and Deep Learning (DL) techniques [17]. Exising
epidemiological models provide a broader, more generalized idea altahe future
behaviour of the disease. In contrast, the latter uses immediate istorical data of
epi-curves to obtain shorter, but more accurate numerical foreasts, thereby providing
insights of infection data on a higher resolution, in turn playing a key role in assessing
the state of the pandemic. Hence, Let us explore the level of workhus far carried out
in numerical forecasts of COVID-19.

Many researchers have reviewed the use Al models in COVID-19
forecasting [18{20]. These studies describe the use of statisticatodels such as AR
and ARIMA, along with NN/DL models like Artificial Neural Networks (A NNs) and
Long-Short-Term-Memory (LSTM) networks. It was observed here that the LSTM
network was most commonly used, and at most times the best perfaning model for
numerical forecasting of COVID-19. Upon region-wise analysis, th aforementioned Al
techniques have been used to predict future COVID-19 cases in mg regions such as
Canada [21], Pakistan[[22], Brazil[[23] and many others [24,25]. Thesstudies have
been carried out for highly populated areas, and the forecasting as performed at
country level where the epi-curves are smooth and data is abundd. However, upon
searching for data and forecasting done at higher resolutions (i.eat
state/province/district/county level) the data and studies are la cking. It is evident
that there is a clear need for region-wise forecasting at a higher swlution as the
threat level for different regions in a single country might vary. Hence, in order to
practice the optimum containment strategies argued previously, ach state or province
might require its own unique forecast and corresponding containmat strategy. As, a
nationwide threat level might be misleading and lead to an over-readbn or
under-reaction by the government through its containment effats, thus, compromising
the entire effort. For instance, although research has been danusing statistical
models to predict the total number of cases in Sri Lanka[][26], thee exists no

district-wise prediction study within the country, which would be useful for policy
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makers to make more localized decisions in terms of medical resouraiocation
(hospitals, ICU beds and PPEs) and containment (through social dstancing and
motion control regulations and vaccination efforts). These localied prediction studies
will be of paramount importance especially for countries with limited or strained
resources as a result of the more contagious variants that haveugfaced in recent times.

The scarcity in higher resolution localized forecasting studies is mainldue to the
lack of reliable, deterministic historical COVID-19 data that can be extracted into
useful information, thereby increasing the difficulty to create rich datasets to be fed
into Al models. A significant contributor towards this lack of reliable d ata is low
testing frequencies and inconsistent testing patterns in some regns, resulting in
unrealistic epi-curves where large fluctuations are displayed within elatively small
periods [27]. In addition to the lack of reliability in forecasting, a threat level
assessment performed here too will be highly unreliable with raw datalue to the same
reasons.

To overcome the aforementioned issue of large fluctuations, multile smoothing
methods exist in literature, where noisy signals (i.e., fluctuating sign#s) are smoothed
along the time domain. One such method, although relatively primitive, but used in
the case of COVID-19, is the N-day averaging algorithm, where thecurrent number of
cases is the average value of the number of cases in N previous d4¥ An improved
version of N-day averaging is the Moving Average (MA) filter, wherethe current
number of cases is a weighted average of the cases in the pasti[2Bhe MA filter
learns the dependency of the previous days' cases to determinbd current number of
cases. The use of smoothing algorithms in COVID-19 forecasting isdwever limited to
the two aforementioned methods; N-day averaging and MA filters,as alternative
smoothing methods beyond these rudimentary techniques are yeb be explored in
data pre-processing for the COVID-19domain. One such methodderived from Digital
Signal Processing (DSP) literature, is low-pass filtering (LFP), led by the analysis of
the original signal in its frequency domain. LPF selectively removesliictuating
components from a time-series signal, resulting in a much smootheignal. This is
enabled by the conversion of the time-series signal from the time doain to the
frequency domain, where the fluctuating nature of the signal carbe directly

quantified. The use of LPF is advantageous as it preserves the qlity of information
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in the low-frequency (smooth) components of a signal, whilst seleately filtering its
high-frequency (fluctuating) components [29].

However, LPF, N-day averaging, or MA, when used for COVID-19 pediction and
analysis displays a limitation, especially when applied for case studies #t contain
regions that exhibit a wide range of epi-curve patterns; some ex&mely fluctuating
and some less so. The diverse nature of epi-curves results in suptional smoothing
when global smoothing parameters are used; where these parataes of a given
algorithm are constant throughout the case study. The local cotext of epi-curves in a
case study might add more or less localized/situational volatility, herce, a global
smoothing might actually lead to information loss in such cases, as oppsed to
information enhancement that is needed to be achieved. For exanip, 3-day averaging
may not be sufficient to smoothen epi-curves in a region where testg is carried out
every 7 days, whereas 14-day averaging may cause information ksAlso, the number
of tests carried out in each day will not be consistent. To addresshese problems, it is
possible to manually set the smoothing parameters for each epi-cue in a case study.
However, it could be a tedious task when given multiple datasets with darge number
of epi-curves, and manual selection of these parameters might bmibjected to operator
bias. This gives rise to the requirement of an automated algorithm, vinere the optimal
parameters of the smoothing technique are computed for each epurve, depending on
their fluctuating nature.

In this paper, an optimized LPF-based smoothing technique is propeed, which is
tuned such that it attempts to smoothen a given epi-curve by maximzing the removal
of fluctuating components, whilst minimizing the loss of useful information in the
original signal in a local context. Upon the initial comparison of the proposed
optimized smoothing technique with non-optimized techniques, thusverifying the need
for automated, optimized techniques over manual selection of smathing parameters.
Then, the feasibility of the proposed localized smoothing technique as validated by
comparing COVID-19 alert levels in a given region using the proposedrsoothing
method versus unsmoothed epi-curves. The alert level analysis wecarried out based
on a known alert level system[[14], where raw and smoothed case datvas converted
to COVID-19 alert levels, and the effect on reliability of the alert levels in that region

due to the proposed smoothing technique was discussed. To comieuthe alert levels,
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two distinct methods were used, one which responds instantly to higly fluctuating
data, and the other which hardly responds to fluctuating data. The contrasting
characteristics of these alert levels were used to highlight the impdance of the
optimized smoothing technique. Upon validation through alert level analysis, the
proposed technique was used to smoothen epi-curves which werdfas training data
to train a COVID-19 daily case forecasting model. This would then firmly establish
the adaptive localized smoothing operation as the optimum data condioning tool to
be used under high resolution local environments prior to performig forecasting tasks.
Upon carrying out the forecasting process, it was also found thathe forecasting
models trained using COVID-19 data smooothed using the proposedmoothing
algorithm resulted in significantly higher prediction accuracies, evenupon evaluation
with raw data as the ground truth.

Another key drawback observed in existing literature for forecasing
COVID-19 [ZIfPY] is that most commonly, data from a particular region is used for
both training and testing purposes, and their corresponding foreasting models. This
leads to a decrease in the deploy-ability of these models, by limiting theossibility of
these models being used to forecast COVID-19 cases in regions thare un-trained by
them. For instance, a model trained using COVID-19 cases in India W not perform
well in predicting COVID-19 cases in a region such as the USA, due tohte contrasting
nature of their epi-curves [30]. Especially with the advent of new vaiants, countries
previously less affected by the pandemic are observing sudden g@s in infections and
deaths. However, the past infection data on many of these counies would hardly
provide any insight onto how the epidemic can be forecasted in its cuent state. This
is amplified by the fact that certain countries also only perform testing in limited
capacities. Hence, the need arises for forecasting solutions trad in a more
generalized/global manner as these can now be used for such nat& This will
become even more prominent with more and more variants coming intglay.

Such a solution is proposed in this study, through a generalized traiimg strategy,

where a COVID-19 forecasting model is trained using a select numiveof “diverse' and

‘representative' regions, such that the model will have the ability o predict COVID-19

cases in any given region. The choice of these training regions washgact to the

diversity in geographical location and demographic features of edcregion, as these
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representative regions on which the forecasting model is traineddve to form a diverse
enough basis both geographically and demographically to train the mdel such that it
is usable anywhere in the world. As for the forecasting model,
Long-Short-Term-Memory (LSTM) based Neural Network (NN) was designed. The
use of NNs for time-series forecasting for COVID-197[18] coupled ith the abundant
use of LSTMs for time-series problems[31] led to an LSTM-based NNding the
optimal forecasting architecture to be used for our case studyThis predictive model
was evaluated by forecasting daily new cases in test regions previsly unseen by the
model (i.e., not used in training).

A significant finding of this study is that choosing the aforementioned generalized
training strategy to train the LSTM-based NN model results in bett er prediction
performances when compared to models trained using previously sbrved data from
the test region itself. Therefore, it is recommended to train the LS M-based NN
model through a geographically and demographically representatie set of countries to
form a basis that would ideally span the total possibility space. Then vhen a new
region is selected for forecasting through a model trained in this maner, it would
account for most the possibilities the new wave the region in concermould encounter.
Therefore, if it sees that specific attribute in the region's epidemiolgy model it would
trigger a prediction based on that aspect. Hence, resulting at tims in better
prediction performances that compared to models trained using peviously observed
data from the region itself.

Poorly trained NN models result in poor and inaccurate predictions. Afactor that
negatively affects the performance of NN models in the training praess is the lack of
balanced data in a training dataset. In the instance of COVID-19, onsidering daily
new cases throughout a long period of time for a region/country, he imbalance is
caused by most values in an epi-curve being zero. This is due to eith€2OVID-19
cases being recorded periodically (resulting in the non-recorded ga being zero), or an
instance where an epi-curve has a multi-modal nature (due to sepate waves of the
pandemic), resulting in no recorded cases between two peaks. Thiarge number of
zero values results in a training bias, where the NN model would be merinclined to
predict zeros due to having 'seen' more zeros in the training proces To overcome this,

a density-based adaptive loss function[]32] was proposed. The germance the final
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LSTM-based NN model consisting of the adaptive loss function waswaluated, and
compared with models trained with the standard loss functions. It was observed that
the model trained using the proposed loss function produced moraccurate
predictions when compared to the models trained using standard Iasfunctions,
specifically for the models trained with raw (unsmoothed) data.

In summary, the contributions of this paper are as follows,

" An optimized smoothing technique to smooth COVID-19 epi-curves inregions
with varying testing patterns was proposed using time-domain and
frequency-domain analysis of signals. The smoothing technique is
locally/contextually optimized based on the epidemiological dynamics 6 the
region allowing for better data condition prior to use for forecasting and

modeling.

An analysis of behavioural patterns of different alert level systens was carried

out for smoothed vs. non-smoothed epi-curves.

An LSTM-based NN predictive model to predict daily new COVID-19 cases
10-days ahead, trained using a generalized training strategy to g¢wtruct a more
representative training space/basis was introduced that is capale of predicting
COVID-19 infection levels for any given region. This includes regions at
included in the training set, hence, allowing for predictions in regions vith lack

of data and/or with new waves of infections.

An adaptive loss function was proposed for the LSTM-NN based prdictive

model to mitigate the common problem of high zero values in epi-cung

Materials and methods

The Materials and Methods section is summarized as follows. First, aintroduction to
the train-test process is given. Then, the proposed optimal smathing technique is
presented, followed by a description of the COVID-19 forecastingnodel. Finally,
forecasting model was evaluated using the proposed generalizedining strategy. A

schematic flow of the methodology is shown in Fid1L.
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Fig 1. Summary of methodology

The train-test process

Our work focuses on developing an end-to-end generalized solutidowards forecasting
daily new cases of COVID-19 in any given region throughout the globgon a localize,
high-resolution context. In simple terms, a generalized approachdwards localized
forecasts of COVID-19. This solution consists of a training and tetng process.
During the training process, a universally optimized smoothing functon is used to
smoothen noisy epi-curves, followed by a training of the time-serieforecasting model
for COVID-19 daily cases that employs a generalized training stratgy to train an
LSTM-based neural network along with the density-based adaptie loss function. The
testing process evaluates the trained LSTM-based predictive moel on previously
unseen datasets, where historical COVID-19 data is of the regionbelonging to these
datasets is not considered during any part of the training processThe train-test

process is further described in Fig R through a simple schematic diagm.

Epi-curve analysis and datasets used

The datasets in our case study were divided into two sections; traimg and testing.
Training data would be used in setting the model parameters in the LSM-based
predictor and tuning the smoothing algorithm, whereas testing data was used to
validate the forecasting process, thereby providing an insight asd how the model
reacts to previously unseen data.

First, let us consider a few examples of epi-curve variabilities, which vl establish
the need for the generalized training strategy and the optimized sraothing algorithm.

The presence of variations in epi-curve properties across regiomgas important to
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Fig 2. The train-test process

encapsulate most kinds of possible epi-curve scenarios in the trainjnprocess. One
such example would be the testing patterns in each region. Conside¢he
auto-correlation functions of epi-curves of 2 regions from the taining dataset; Italy
and Bangladesh, shown in Fig_B. An auto-correlation function detemines how much
of a current value in time is dependent on its previous values. In the ase of epi-curves
of provinces in Italy, a peak in auto-correlation is observed every ®ays. In other
words, the number of daily cases on a given day of the week correkes better with the
same day of the previous weeks, thus indicating a weekly testing aangement being
carried out for each province. However, epi-curves of districts irBangladesh does not
show such trends; a result of a less deterministic testing system whiin the country, an
attribute consistent throughout countries of the South Asian region.

Another factor, apart from the testing frequencies shown in FigE3 that mainly
solidifies the need for an optimal smoothing algorithm is the quality of testing
patterns in geographical areas. This determines the amount of da that can be
extracted as useful information, in terms of COVID-19 cases or daths. This is due to
epi-curves containing inconsistent testing patterns result in highe fluctuations that

contribute to its noisy nature. This implies that there exists a variation in the
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smoothness of epi-curves in each area.

For example, consider two counties in the state of Texas, Cottle conty (with a
population of 1,642 in 2019) and Lubbock county (with a population of 310,569 in
2019). Since only total number of tests in each county is available (lek of testing data:
a trait consistent with most smaller sub-regions), the relationship between the daily
new COVID-19 cases with humber of tests carried out in each day amot be derived.
Therefore, it was assumed that there exists a correlation betweethe daily testing
patterns and the total number of tests. This is inferred through visual observation in
Fig 4], where Cottle County and Lubbock County, having 431 and 5781 total number
of tests respectively (as of January 2021), differ in the fluctuaing nature of their
respective epi-curves, possibly due to the differences in daily teisty patterns for each
county. In addition to the aforementioned two sub-regions, the ©ntrasting nature of
epi-curves in the wide range of sub-regions used in this study is infing, due to their
geographic and demographic diversity, thereby further clarifyingthe need for optimal

smoothing and the proposed generalized training strategy.

Training regions

For training, sub-national COVID-19 daily case data were obtainedfrom a variety of
regions, both demographically and geographically diverse from eacbther. This allows
for a robust model that maximizes deployability for any region throughout the world.
Data was collected from Counties in the state of Texas, USA (US-TX and
sub-national data was collected from states in Nigeria (NGA), prounces in

Kazakhstan (KAZ), provinces in Italy (ITA), districts of Banglade sh (BGD), cities in
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Fig 4. Daily COVID-19 cases for Cottle County and Lubbock Cou nty.

Korea (KOR) and states of Germany (DEU). To obtain more variatio ns between
epi-curves through geographic diversity, regions belonging to theraining dataset were

chosen such that these regions are spread out throughout thearld, as shown in Fig[5.

ONOR ORUS

©DEU @KAZ

OITA KOR@ .0 JPN
O US-TX
®BGD
ONGA OLKA
@ Training regions
o Test regions
Fig 5. The geographical spread of regions used for training a nd testing the

proposed forecasting model

Testing regions

As opposed to using part of data from each country as test datadaily COVID-19 cases
reported from previously unseen regions were used to validate thenodel. Predicting
future COVID-19 cases in these 'unseen' regions will ensure the géoy-ability of the
model whilst validating the proposed generalised training strategy.

In this case, sub-national COVID-19 data from prefectures in Jgpan (JPN), cities
in Russia (RUS), states of Norway (NOR) and districts of Sri Lanka (LKA) was used.
It should be noted that the aforementioned regions were not at allused to train the

LSTM-based NN model. This emulates a more realistic scenario where @VID-19
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predictions have to be carried out on a completely new region plaguedith the
pandemic, or a case where historical COVID-19 data is lacking. On tp of this, new
variants such as the Delta and epsilon variants bring about new epi-grve dynamics.
The transmissiblity of these variants contribute to the general rate of increase that can
be seen in epi-curves. Therefore, this enables us to incorporatbe surge dynamics of
such highly contagious variants from regions first affected by it into regions that just
got exposed to it, which enables rapid response for these region$he geographical
locations of each test region are also depicted in Fig 5.

To validate the smoothing algorithm, epi-curves from Sri Lanka and Texas were
extracted, whilst Sri Lanka alone was used to analyze how COVID-Q alert levels were
obtained after smoothing. The reason for this is that Sri Lanka dees not have an
ongoing alert level system, hence it is of paramount importance thaa usable alert
level system for Sri Lanka is formulated. A summary of all datases and their uses in

each case study is summarized in Table 1.

Table 1. Summary of datasets and their use in each case study

Region Features Case study
Name ISO code | Resolution NO.' of Start date End date Smoothing AIert-IgveI For_ecastmg
epi-curves analysis Train | Test

Texas US-TX Counties 254 04/04/2020 | 02/09/2021 | X X

Nigeria NGA States 37 02/27/2020 | 05/03/2021 X

Italy ITA Provinces 149 02/24/2020 | 05/24/2021 X
Bangladesh BGD Districts 64 07/08/2020 | 01/15/2020 X
Kazakhstan KAZ Provinces 17 03/27/2020 | 05/30/2021 X

Korea KOR Cities 17 01/20/2020 | 05/20/2021 X
Germany DEU States 16 01/03/2020 | 05/23/2021 X

Japan JPN Prefectures | 47 03/18/2020 | 05/19/2021 X
Sri Lanka LKA Districts 26 11/14/2020 | 03/19/2021 | X X X
Russia RUS Cities 83 03/20/2020 | 05/04/2021 X
Norway NOR States 11 01/03/2020 | 05/23/2021 X

Optimized smoothing technique

Low-pass filtering using parameter optimization

Low pass filters are utilized to denoise noisy signals such as in Cottle cotry (as in

Fig 4, by modifying the signal in its spectral (frequency) domain. A low pass filter

essentially attenuates these high-frequency components whilstdeping the

low-frequency components intact. One of the main parameters o& low-pass filter is
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its cutoff frequency. It determines the degree to which a given sigal will be
smoothed/filtered. In the case of Texas, if all counties are filterel equally (i.e., with a
constant cutoff frequency), there exists the possibility of unde-filtering or
over-filtering data. A smoothed signal, when under-filtered, contins a significant
number of noisy components that remain from the original signal. Incontrast, when a
signal is over-filtered, it loses most of its useful information in the fitering process
possibly resulting in an over-smoothed signal.

An optimized low-pass filter model is proposed, which attempts to mirimize its
noisy nature while maximizing the amount of useful information retained. This
condition is determined by an optimal cutoff frequency at which the low-pass filter
operates to denoise epi-curves in each region. A first order Buttgvorth filter [33] was
chosen for filtering, as it exhibits a much smoother decrease in filtemagnitude with
increasing frequency, as opposed to higher-order filters. A lowesrder filter (first order
in this case) would result in a gradual attenuation of noisy componets in a signal,
which will increase the allowable margin of error in an instance where th chosen
cutoff frequency is non-optimal.

To determine the optimal cutoff frequency, an optimizer was devéoped, where its

objective function was expressed by,

max; J(! )=a Jr(')+ b Jpsp (') (1)

where Jr (! ) is the normalized cross-correlation fitness functionJpsp (! ) is the
normalized Power Spectral Density (PSD) fitness function anda, b are scaling
constants. The choice of Eq (1) as the objective function, was diject to the easy
manipulation and tuneable nature of this function, by changing the parametersa and
b.

Ideally, in a region with a high testing frequency and consistent tesing patterns
(i.e., a much smoother epi-curve), the filtering should be minimal. This isbecause a
relatively larger percentage of the useful information will be encapulated in the
original signal itself, in contrast to much noisier signals which correpond to

COVID-19 epi-curves in regions with sporadic and limited testing pradices. In
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technical terms, smoother epi-curves will exhibit a high Signal-to-Nise ratio (SNR).

This retainment of information is quantified using Jg (! ), which is denoted by,

Jr(!) = E[Xintar  Xritered (! )] (2

where E is the expectation operator, Xiniiar  and Xiiereq (! ) correspond to the
original unfiltered signal and the filtered signal at a cutoff frequency of ! respectively.

Here, Xiniiar IS the term used to denote the entirety of the initial signal, expresgd by,

Xiniial = Xsignal + Xnoise 3)

where Xsignai is the 'true’ nature of the epi-curve (which needs to be estimated)and
Xnoise 1S the fluctuating components caused by measurement noise, a nas of
irregular testing patterns.

To demonstrate the need for alJpsp (! ) in addition to Jg(!) in Eq (1), let us first
consider a case wher&X noise IS purely white. That is, the testing patterns are
completely random and show no deterministic nature at all. Here, opimal filtering
can be achieved by completely removing white noise, as the crossrcelation
component (retainment of information) between two signals do notchange with the
addition or removal of white noise, hence Jr (! ) will be equal to 1 and the initial and
filtered signals will be perfectly correlated. However, as previouslobserved in Fig 3,
external factors do contribute to testing patters of a region, thereby making X noise
deterministic to an extent. As this is the case, only removing the whie noise
components will not sufficiently remove X noise ; the main objective of the smoothing
algorithm. It will result in the output signal being under-filtered, du e to retainment of
some parts ofX neise , Which can be considered 'coloured' noise. This implies that
achieving Jg (! ) = 1 does not result in optimal filtering most of the time, and in some
instances, the above condition will not be satisfied unless the filtere signal directly
overlaps the original signal (i.e., no filtering). Hence, the need arisefor another term
Jpsp (1), that attempts to further attenuate coloured noisy components of the signal.

Jpsp (1) is computed by spectral analysis of the given noisy signal. The Powe
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Spectral Density (PSD) of a signal is the measure of energy of thasignal as a
function of its frequency components. In other words, how muchof the signal consists
of high frequency components, and how much of it consists of low équency
components. High PSD values towards the latter end of the frequecy spectrum
suggests that the signal contains a large number of high-frequey components. The
use of a low-pass filter results in an increased difference betweehda PSDs before and
after filtering towards the higher frequency bands, which is used & compute the PSD

fitness function given by,

X
Jpsp (1) = [9(i) (P SDinitar (i) P SDriterea (i5! ))] 4)
i=1

where P SDjniiar and P SDyiiereq are the N-point discretized PSDs of the original
and filtered signals respectively, andg is a monotonically increasing function. Due to
its monotonically increasing nature, g serves to provide more emphasis on the
differences of PSDs towards the latter part of the frequency sectrum. Hence,

Jpsp (1) increases as the PSD difference in high-frequency bands incresss In this
study, g is a ramp function denoted byg(i) = i, forall0 i N. The scaling
constants,a and b used to tune J(! ), determine whether the overall objective function
Eq (1) relies more on noise reduction or information preservation. A illustration of

its dynamics under multiple a and b settings is shown in Fig 6.

0 4

a<<b a>>b

A
»

Fig 6. Dynamics of J(!) under multiple a and b settings

As observed in the figure, whena is significantly larger than b (yellow/far right
section), Jr (! ) takes higher prominence in Eq (1), hence the final cutoff frequecy will

be higher, thereby focusing more on information preservation. Tis will possibly retain
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someXnoise COMponents in the filtered signal, resulting in under-filtering. In contrast,
when a << b (blue/far left section), the objective function will be tuned such that a
large chunk of high frequency components is removed by setting aevy low cutoff
frequency, thereby exposing the risk of over-filtering, due to renoval of important
signal information from Xsggnai in addition to X neise . Therefore, to eliminate possible
effects of under-filtering and over-filtering the signal,a and b must be pre-set such
that it falls in the green/middle section denoted by Fig 6. It was found out through
trial and error, that an a=bratio between 1:00 and 150 was suitable for this study.
This ratio will essentially serve as a constraint in the optimization process, where the
actual optimization will be carried out in Eq (1), within the bounds of a and b. It
should be noted that a poor choice of these parameters will result irall epi-curves

either being over-filtered or under-filtered, regardless of the opmization procedure.

Validation using COVID-19 alert level analysis

An analysis of alert levels computed using smoothed and non-smoo#u data was
carried out to validate the proposed smoothing technique. As preiously mentioned in
relation to testing regions, computation of alert levels in a number ofdistricts in Sri
Lanka was carried, out using two methods as described in the Intrduction section
which are based on [14]. These alert level systems were redefinedtas Low-Inertial
alert level and the High-Inertial alert level. This is because one metbd's response to
fluctuating data is imminent, and the other hardly responds to fluctuating data. The
specific use of districts in Sri Lanka was due to their high volatility, as smoother
regions in general are less affected by smoothing, they emulatedhé¢ natural
high-inertial tendency. More details regarding this will be noted in the later Results
section.

According to [14], three alert level systems are introduced for dis&se situation,
health care system and disease control respectively. The numbef daily cases per one
million population (i.e., daily incidence) was defined as the "disease situabn". alert
level thresholds were assigned as levels 1, 2, 3 and 4 if the daily caseidence was
lower than 10, between 10 and 19, between 20 and 40, above 40 pestively. The
conditions met to increase or decrease a level were set such thate nature of the alert

level shows high inertia in one case, and low inertia in the other. To oldin high
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inertia, a level was increased if an upper threshold was met for 7 caecutive days and
the alert level was decreased if a lower threshold was met for 14 ceecutive days. In
contrast, the low inertial alert level was obtained by changing the dert level
instantaneously based on the daily case incidence. To ensure cortsiscy in analysis,
threshold values of both the low and high inertial alert levels were kepequal.

Unlike forecasting, the 'goodness' of the behaviour of an alert ledecannot be
directly computed. Therefore, a qualitative analysis was carried oticomparing how
well the behaviour of an alert level relates to a real-world situation. It is widely known
that alert levels in general, exhibit a high inertial nature. That is, once it changes
from one state to another, it tends to stay in that state for at least a number of days
prior to moving up or down a level. Therefore for the low inertial case the effect of
smoothing was quantified by the reduction in the number of 'spikes’ intime, where a
spike is defined as the instance where a level would constantly chaagvithin a span of
three consecutive days.

However, taking into account the high inertial alert level, if the number of cases per
day were to keep fluctuating, levels would not change due to the nuioer of daily
COVID-19 cases would not consistently remain above or below a ceatn threshold for
a consecutive number of days. Hence, the effect of smoothing dhe high-inertial alert
level was evaluated by observing the frequency of changes in thdeat level over time,
as the lack of fluctuations would result in a more realistic representtion of alert level
behaviour. Essentially, the evaluation of the two aforementioned é&ert levels is carried
out by analysing how each alert level tends to display traits contrary to its main
attribute. In other words, how high inertial characteristics are shown in the low
inertial alert level and vice-versa.

In addition to validation using COVID-19 alert levels, the proposed snmoothing
algorithm was compared with N-day averaging, the most commonly ued de-noiser for

COVID-19 related time-series models.
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COVID-19 forecasting model
Data pre-processing and train-test splits

To obtain optimal performance from predictive models, data was pe-processed
through normalisation [34]. As some highly populated regions displayea large
number of cases and vice-versa, each region was 0-1 normalize@&nke allowing the
predictive model to train only based on the shape and trends of edcepi-curve. These
normalized data were then smoothed as will be discussed further uter the Proposed
optimal smoothing technique. Training samples were obtained by exiacting several
samples from each normalized and smoothed epi-curve. Each sampias then split
into two parts, the input sequence of daily new cases and the seqoee of daily new

cases that needs to be predicted using the input sequence, as illuated in Fig 7.

Fig 7. A sample extracted from an epi-curve for the training d ataset.

As observed in Fig 7, the size of a sample is the sum of the number of gdiction
input and output days. Hence, to ensure no overlap and mutual eglusivity between
samples, the maximum number of samples that can be extracted fa an epi-curve is
the time period of an existing epi-curve divided by the sample size. Thefore, the
total number of training samples from all datasets will be this maximum number for
each epi-curve, multiplied by the total number of epi-curves per rgion, times the
number of training regions. All training samples were extracted fran epi-curve data
before 1st of March 2021, and the trained models were tested usinepi-curve data

after 1st of March 2021.
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Neural Network architecture, Adaptive loss function and op timizer

A long-short-term memory network (LSTM) [35], which is widely used for time-series
predictions was designed as the proposed NN model. A main featurd €STM is that

it mainly relies on selective storage of previous time-series data, tharelieving memory
constraints. The trends visually observed in previous epidemiologidadata and the
ability to selectively store information led to LSTMs being the choice of network for
prediction, over more primitive algorithms such as Dense Neural natorks. In

addition, the abundant use of LSTMs in COVID-19 forecasting literature led to the
clear and obvious choice of LSTMs as the baseline forecasting model.

Epi-curves that belong to case studies that contain longer periodsf data, display a
multi-modal nature. Hence, they contain a large number of zeroesThat is, except
during the periods of COVID-19 waves, daily case incidences hardlyxést. This larger
distribution of zeros and values close to zero produces epi-curvélsat belong to
regions such as Lombardy in Italy as shown in Fig 8, that contribute o an unbalanced
dataset, resulting in an inefficient training process for forecastig models. This is due
to the predictive model seeing a large number of zeroes whilst trainig, thereby

assuming a high probability of zeros in its prediction.

Fig 8. Daily new COVID-19 cases in Lombardy, Italy
Note that almost half the values in this epi-curve are close to zero.

To tackle this condition, two common methods exist; under-samplingand adaptive
loss functions [36]. Under-sampling extracts several samples frothe original dataset
to create a new dataset, randomly or by a pre-determined samplindunction. However,
under-sampling reduces the number of training samples, and is ineffient in the case

of COVID-19, where the size of training data is limited. On the other hand, adaptive
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loss functions are used in the model training process. They consid¢he position of
each training sample in the whole distribution and amplify/attenuate t he loss

depending on the rarity/abundance of that sample. A density-basd adaptive loss
function was proposed, derived from the standard loss metric; Man Squared Error

(MSE), and this function is expressed by,

X X (Yyue (1) Yprea (1))

LA T 10ldt ()

()

where B is the set of samples in a batchn is the batch size, andt is a particular
day from the predicted days. The functionf returns the new daily cases(t) count in
the dataset. In simple terms, Eq (5) implies that lesser occurring smples would
display an amplified error metric L compared to the actual training error, and
vise-versa.

Among NN optimizers such as Stochastic Gradient Descent (SGD), RISprop, and
Adam optimizers, Adam optimizer was chosen due to its consistent aovergence

towards an optimum solution [37].

Evaluation methods

Several methods were implemented to evaluate the proposed farasting algorithm,
both qualitatively and quantitatively. First, visual observation was carried out for the
predicted vs observed samples to analyze the effect of smoothirand under-sampling.
Then, the overall prediction accuracy was calculated and analyzedvith and without
the smoothing and under-sampling techniques. As listed in Table 2, beveen
smoothed/raw training data and types of loss functions, four disinct models exist.
The accuracies of these four models were initially calculated for eacmodel to forecast
daily cases 10 days into the future, given 50-day previous data. Tése accuracies were
then analyzed to choose the best combination of smoothing techniges and loss
functions, and the corresponding model was chosen as the optirhenodel. To quantify
all prediction errors, the Mean Absolute Error (MAE) metric was used.

All code was written in Python 3.8. Tensorflow 2.4 was used as the prirary

Machine Learning tool, in addition to the conventional data science libraries in Python
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Table 2. Methods used for evaluation

Method Model name Training Data Loss function

A LSTM-R-N Raw Standard MSE

B LSTM-R-L Raw Proposed function
C LSTM-F-N Smoothed Standard MSE

D LSTM-F-L Smoothed Proposed function

3.8.

Results and Discussion

Optimized smoothing technique

To reinforce the necessity of an optimized smoothed algorithm, epturves of each
county were smoothed using LPFs with two distinct high and low cutoff frequencies.
Taking into account the two counties of Texas mentioned in the epi-arve analysis, the
smoothed signals using these high and low cutoff frequencies of tbe counties; Cottle

and Lubbock county, are shown in Fig 9 and Fig 10 respectively.

Fig 9. Filtered signal with high cutoff frequency
(a)Cottle County. (b)Lubbock County.

Fig 10. Filtered signal with low cutoff frequency
(a)Cottle County. (b)Lubbock County.
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As observed in Fig 9, although the signal for Lubbock county that issmoothed
using a high-cutoff LPF is ideal, Cottle county displays a noisy curve,similar to the
original signal. This is a result of under-filtering, where the high-frequency
components still exist in the smoothed signal.

In contrast, excessively lowering the cutoff frequency to accoat for noisy signals
results in over-filtering, where a loss of information is observed frm less noisy initial
signals such as Lubbock county, as shown in Fig 10.

The proposed optimized filter addresses the under-filtering and osr-filtering

problem, as illustrated in Fig 11.

Fig 11. Filtered signal with optimized cutoff frequencies
(a)Cottle County. (b)Lubbock County.

From Fig 11, it is observed that the noisy nature of data is removed inCottle
county, whilst preserving nature of the curve in Lubbock county.

In addition to counties of Texas, the daily new case data for districs in Sri Lanka
was smoothed using the proposed optimized LPF. The original vs snathed daily case

data for the 3 most affected districts in Sri Lanka is shown in Fig 12.

Fig 12. Original vs filtered daily new cases for top 3 COVID-1 9 affected
districts in Sri Lanka

Another important feature of the proposed smoothing algorithm is the removal of

time delay that is otherwise caused by existing smoothing methods foCOVID-19
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such as n-day averaging. Consider the epi-curve of a district in Si.anka smoothed
using the proposed algorithm and n-day averaging. As observed inif 13, there exists
a time delay between the original and smoothed signal, when smootldeusing n-day
averaging. This phenomenon is common for all smoothing algorithmswaluated in the
time domain. In contrast, this delay does not affect smoothed sigals evaluated using
frequency domain analysis, as they are time invariant. It can also bebserved that
although n-day averaging reduces noise to an extent, there alwayexists a

non-determinant nature, as opposed to the proposed smoothinglgorithm.

Fig 13. Comparison of N-day averaging and proposed smoothin g algorithm

Validation using COVID-19 alert level analysis

The optimal smoothing technique resulted in a significant reduction d 'spikes' in the
low-inertial alert level, as shown in Fig 14, where the low-inertial alertlevel for the
districts of Kurunegala and Trincomalee in Sri Lanka was computed ing original and
smoothed data. The total number of spikes for all districts decrased from 676 to 4
over the 120-day period considered for all districts upon smoothig, which resulted in
a much more realistic representation of COVID-19 alert levels in time.

Considering the high-inertial alert level, in contrast to districts with less
fluctuating epi-curves which indicated little change in behaviour due to smoothing,
districts corresponding to higher fluctuating epi-curves such as Kirunegala and
Trincomalee showed significant changes in behaviour. This is obserddn figure Fig 15,
where these districts which were previously at a constant alert leviethroughout the

120-day period, now display trends that align more towards the rehdisease situation
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Fig 14. The behaviour of low-inertial alert levels in distri cts of Sri Lanka.
(left) Kurunegala. (right) Trincomalee.

(the reported number of cases).

Fig 15. Behaviour of high-inertial alert levels in disricts of Sri Lanka.
(left) Kurunegala. (right) Trincomalee.

To further affirm the advantage of the reduction of 'spikes’, consder the alert levels
of Kurenegala in Fig 14. When comparing the smoothed and original lownertial alert
levels during the 40-60 day period since 14 November 2020, it is obsable that there
exists a fair number of cases during that period. This correspondo an increase in
the alert level computed from original data. However, the smootted alert level does
not change from zero as the average value is less than the threddaat which the level
would increase. This explains that the alert level computed using orighal data is due
to the backlog of observed cases reported on each day, wheresea are reported every
2-3 days. Hence, policy makers would not need to react hastily dueotthe reported
number of cases.

From Fig 14 and Fig 15 it is observable that the similarity between the lowinertial
and high-inertial alert levels are much higher when computed using smwothed
epi-curves, as opposed to when computed using original epi-curse This allows the

low-inertial alert level, which operates on real-time data, to be a us&ul indicator of the
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current disease situation. In other words, the smooth nature othe high-inertial alert
level is encapsulated in the low-inertial alert level, when computed uisig smoothed
epi-curves. This is advantageous for policy makers as they do notave to resort to
analysing the high inertial alert level which carries an inherent lag in time. Also,
issues due to backlogs which can naturally occur in times of pandemiosith the
associated heavy caseloads are auto-corrected by the propdsmechanic preventing

hasty conclusions to noisy data.

Forecasting daily new COVID-19 cases

Daily new COVID-19 cases in testing regions were predicted 10 dayshead, given
50-day previous data using the LSTM-based NN model, and was evalited using
Methods A, B, C and D as mentioned in Table 2. The prediction of daily cases using
these methods for Hokkaido (a prefecture of Japan) is visually illustated in Fig 16 for
the model trained with raw data, and Fig 17 for the model trained usng smoothed

data.

Fig 16. An example prediction for the Hokkaido region in Japa n from the
model trained using raw data.

Models that were trained using the generalized training strategy ae in red and models
trained using the proposed loss function are shown in purple.

It is observable that the predicted data points of the model trained using optimally
smoothed data (LSTM-F) (Fig 17) show fewer fluctuations than the model trained
using raw data (LSTM-R) (Fig 16). In addition, the output from LST M-F when

compared with raw (un-smoothed) data also shows an increase in aaracy, in
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Fig 17. An example prediction for the Hokkaido region in Japa n from the
model trained using smoothed data.

Models that were trained using the generalized training strategy ae in red and models
trained using the proposed loss function are shown in purple.

comparison to the errors obtained by outputs of LSTM-R compara with raw data.
Although this increase cannot be clearly observed from the figureTable 3 shows an
average decrease in mean error by 47% when the model is traineding the adaptive
loss function (Method D vs B) for raw to smoothed data inputs and 0% when trained
using the standard MSE loss function (Method C vs A) for raw to smmthed data
inputs. The removal of noisy components (by smoothing) whilst training provides
better prediction accuracies even when the smoothed output is aopared with raw,
noisy ground truth. This implies a robust training process, caused l the lack of
meaningless data (noise) seen by the model during training, thus mimizing the
possible instances of over-fitting.

On the other hand, comparing LSTM-F and LSTM-R outputs with pre -smoothed
data as the ground truth shows a significant decrease in mean errpby approximately
77% when the model was trained using the adaptive loss function (Méod D vs B: for
raw vs smoothed data inputs) and 86% when trained using the standrd MSE loss
function (Method C vs A: for raw vs smoothed data inputs). In summary, the
LSTM-based NN model trained on smoothed data (Method C and D) aitperforms the
model trained on raw data (Method A and B), under all testing circumstances
considered above.

From Table 3, considering the models trained using unsmoothed (rajvdata from
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Table 3. Prediction errors for 50-day input 10-day output fo recasts
Ground truth dataset and error (MAE/cases)
Training data and method JPN LKA RUS NW
Data type Country Method Raw | Smooth | Raw | Smooth | Raw | Smooth | Raw | Smooth
Selected US-TX-counties, NGA-states, A 60.92| 49.21 | 52.26 9.3 49.21| 49.92 | 49.92| 28.67
reqions ITA-provinces, BGD-districts, B 45.84 34.01 23.96 7.55 34.01 20.26 20.26 23.68
forgtrainin KAZ-provinces, KOR-cities, C 37.02 12.82 10.37 1.06 12.82 3.32 3.32 1.81
9 DEU-states D 38.43 14.24 9.99 0.94 14.24 2.74 2.74 1.46
C 46.02 | 25.16
JPN-prefectures 5 36.53 13.55 n/a n/a n/a
L C 14.68 7.77
From test LKA-districts D n/a 14.81 8.38 n/a n/a
regions i C 14.45 8.88
RUS-cities 5 n/a n/a 25 12 1972 n/a
C 39.85 28.5
NOR-states 5 n/a n/a n/a 45.88 45.92

all training datasets (highlighted in red), the model trained using the proposed loss

function (Method B) performs approximately 40% better when conpared to the model
trained using normal loss (Method A). This observation is more signifcant when
models were trained using original data (non-smoothed) rather tlan smoothed data
(Method D vs C).Hence, the proposed adaptive loss function by itsé contributes to a
standalone performance increase when used independently to tlemoothing technique.
This might be useful for policy makers who decide to utilize raw data asopposed to
smoothed data due to high confidence in historical data. This is mody applicable to
countries with high test rates.

The reason for the increase in accuracy of Method B compared wittMethod A is
the highly unbalanced nature that exists in the original dataset dueto the
disproportionate number of recorded cases being zero or in its néiporhood, caused
by unrecorded COVID-19 cases in regions where testing is periodiond long periods
between COVID-19 waves in larger datasets. In the latter instane, the nature of
smoothed epi-curves do not deviate from the original epi-curve. dwever, the number
of unrecorded cases in-between days significantly reduces upomeothing. A perfect
example to explain this phenomenon would be the region of Kyoto in Japn, shown in
Fig 18, where its epi-curve contains a large number of unrecordedzéro) days prior to
smoothing. During the training process, the proposed adaptive los function based
predictive model 'ignores' these zeros due to its large number of @arrences by

attenuating the loss function, and provide more emphasis towardgredicting the

August 24, 2021

29/37



non-zero values in the epi-curve. Fig 18 also shows that the smoog#ll epi-curve
discards these zero values, thereby altering the distribution of cees to be more
balanced in comparison to the distribution of raw data. As this characteristic is
consistent throughout most regions extracted from training datasets, there is no
significant change in prediction accuracy of Method D compared to Mthod C, where

both models corresponding to these methods were trained using sothed data.
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Fig 18. Original and smoothed epi-curves and their density d istributions in

the region of Kyoto, Japan.
(left) Original and Smoothed epi-curves. (right) Density distribut ions.

From Table 3, when the selected regions (in Table 1) based on geogrhical
location and epi-curve variation, were used for training (the propsed generalized
training strategy), method D outperformed method C in 3 out of 4 test regions, except
for Japan, where it showed a slightly lesser performance. Howeveit should be noted
that both Method C and D when trained using all test regions produce almost similar
results. Hence, the LSTM-based NN model corresponding to methd D (LSTM-F-L)
was chosen as the best model for prediction, based on the increas performance
shown by the adaptive loss function when trained on raw data. This vill result in the
predictive model being sustainable even in the instance of sub-optial smoothing.
Here, the adaptive loss function performs to a certain extent, a snilar role performed
by the smoothing algorithm. This is due to the effect of non-recored cases between
periodic testing days being nullified by the attenuation in the loss fundion and
rectified by the smoothing algorithm. However, a drawback of the alaptive loss
function is that it also attenuates its loss in the periods that exhibit actual zero
COVID-19 cases, especially between waves in longer epi-curves. &¢e periods, as
opposed to non-recorded cases between days, should be leargtthe LSTM model, as

they correspond to the behaviour of the increase and decreasé 6OVID-19 waves in
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time.

To highlight the importance of the proposed generalized training stategy that
chooses a variety of regions to train the predictive model, daily new ©OVID-19 cases
in each test region (refer Table 1) were predicted using models of thsame predictive
model architecture, but trained only using historical data from that region as is the
current practice in most of the existing body of work. These predition errors are
tabulated in Table 3 (in cyan), where COVID-19 cases in Japan are pedicted using
historical COVID-19 data from Japan, COVID-19 cases in Russia pedicted using
previous Russian data, and so forth. For all test regions, the modl trained using the
selected generalized strategy (from Table 1) yields higher accurgahan the models
trained using their own regions, by an average of 30%. The increada accuracy is
resulted by the addition of external datasets such as the selectkregions, which helps
encapsulate a larger number of epi-curve scenarios that could ogcin a new region,

that might have not already occurred in that region.

Conclusion

In this paper, an end-to-end forecasting system towards localizk predictions of daily
new incidences of COVID-19 is proposed. The forecasting systenousists of an
optimized smoothing algorithm to smoothen fluctuating COVID-19 epi-curves that
result from inconsistent testing strategies, along with an LSTM-based predictive
model trained using a generalized training strategy, in addition to a density-based
adaptive loss function whilst training to tackle unbalanced datasetsthat are the result
of high zero values in their epi-curves. The optimized smoothing algdéthm uses an
objective function that maximizes the smoothness of the resultingepi-curve whilst
minimizing its deviation from the original epi-curve. In other words, it attempts to
strike an optimal balance between retention of the signal or infornation component of
the epi-curve whilst removing uncorrelated as well as correlated nigy elements
utilizing digital signal processing techniques. The density-based Iasfunction is
employed during the model training process, where it attenuates tte training loss
depending on the abundance of a training sample in the training datast. This

mitigates tendencies to predict zero or low values due to their natual high presence in
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practical epi-curve data. The LSTM-based predictive model was tained using
epi-curves from a wide range of regions, chosen such that the riegs are diverse in
both geographic location and nature of epi-curve. This generalizedraining strategy
deviates from the norm in the existing state-of-the-art to utilize local region historical
data for prediction purposes in COVID19 research thus far. Hene, it enables
epidemiological dynamics due to different geographical, demograpt, climatic and
even special event-based to be learned by the model for predictio

To demonstrate the effectiveness of the proposed optimized smothing algorithm,
an alert level analysis was carried out, where COVID-19 alert levels ere computed
using original and smoothed data. It was observed that a more rdsstic alert level is
obtained when computed using smoothed data, whilst preserving itseal-time nature.
It was also observed that the proposed smoothening technique #t utilizes
frequency-domain tools does not result in the time-lag prevalent in andard N-day
moving average methods used in practice. The smoothing algorithm as also validated
using the LSTM-based predictive model, where smoothing resulted im 60% increase
in prediction accuracy. The density-based loss function performeé best when models
were trained using raw datasets, exhibiting a performance increasof 40% in contrast
to models trained using the standard MSE loss functions. This is owingo the ability
of the loss function to correctly identify occurrences where unreorded COVID-19
cases exist, in regions where periodic testing is prevalent. Althougkhe adaptive loss
function doesn't show a significant increase in performance when &ined using
smoothed data, it serves as a buffer in instances where the smduhg algorithm fails
or performs sub-optimally. This increases the robustness of thenadictive model. For
example, when in cases where policy makers prefer raw data due tagh confidence in
them in situations where high and consistent levels of testing take plee. Essentially,
smoothed data is a requirement for regions/countries with limited orinconsistent
testing and for more affluent countries which performs higher raes of testing the
adaptive loss mechanic offers more.

The proposed generalized training strategy was validated, as modetrained using
these diverse representative datasets that formed a more whotis basis for the
training process, resulted in better accuracies when evaluated ajnst models trained

using historical data of individual test regions. The implementation possibilities of
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localized forecasting in regions where new COVID-19 variants occucould be greatly
increased by employing the proposed training strategy. For examie, dynamics of the
delta variant that has already largely occured in some regions of thevorld can be
learnt using this strategy, allowing accurate forecasts in regions Were this variant has

just arrived.
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